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FINAL REPORT

This final report covers our studies on the non-obligate bacterial

predators of bacteria in soil. We discovered these predators in 1980 (1,2),

and the Literature Cited section of this report shows the publications on the

subject since 1980. All of these studies were funded by grants from the U.S.

Army Research Office: the original was DAAG29-79-G-0043, and the present one,

starting in 1985, is DAAG29-85-K-0084. You will note that a "Minireview" (22)

on the subject was published in 1988.

The studies from 1980 to 1985 showed that, if a bacterium such as

Micrococcus luteus is added to soil, it is rapidly attacked by non-obligate

predator bacteria. There are several kinds of these predator bacteria.

However, they all attack and destroy prey bacterial cells in soil, but do so

only if the supply of soluble nutrients in the environment is relatively low.

At higher soluble nutrient levels they are saprophytes. The initial attack on

M. luteus in soil is by a Streptomyces species that puts out feeler mycelium

to locate the prey cells. Once located, the prey cells are surrounded by

mycelium and lysed. This Streptomyces species and the M. luteus cells,

however, are in turn almost immediately attacked by a new kind of bacterium

which we have named Ensifer adhaerens (5). This bacterium attaches endwise to

its host cells and causes them to lyse. About a day later, a myxobacterium

(2,9) multiplies in the vicinity. It uses an extracellular enzyme to lyse

some of the nearby cells, but usually doesn't do much harm.

In general, both predator and prey bacterial species in soil are dormant

much of the time k3,6,9,12,14,15,24). This seems to be a means of avoiding

starvation, desiccation, and predation. For many species of soil bacteria,

the breaking of dormancy is controlled by small amounts of either magnesium
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(11) or copper (20,21,23). The cells need the metal to allow breaking of

dormancy. However, there usually isn't enough of the respective metal that is

readily available in the environment. Therefore, the cells produce a specific

peptide growth initiation factor (GIF) which chelates the respective metal

(scavenges it from the environment) to make it available to the cells. The

cells then break dormancy and start growth. The cells do not need the GIF for

their growth, however: only to initiate growth. Some predator bacteria, such

as Agromyces ramosus (8,13,17,18) and Actinomyces humiferus (11), are so

efficient at making their own particular magnesium-GIF that other micro-

organisms literally may become starved for magnesium because they can't

compete for it. These magnesium-GIF predator bacteria are not at the top of

the predatory hierarchy, however. This exalted position seems to be held by

the bacteria that use the copper-chelating GIF for breaking dormancy

(10,16,17,20,21,23,24). They are very resistant to copper. An example of

these bacterial types is the new bacterium we discovered and named Cupriavidus

necator (20,21).

A. ramosus has no qualms about attacking C. necator, although it usually

must be goaded into doing so (13). C. necator does not use Mg-GIF. Neverthe-

less, it makes some and elaborates it into the environment. This causes A.

ramosus to initiate growth. A. ramosus mycelium then advances toward and

kills about 1/3 of the C. necator cells. The mycelium then fragments into

rod-shaped dormant cells. After a short delay during the initial attack, C.

necator initiates growth and counter attacks A. rriosus to obtain

nutrients(13). The Cu-GIF that C. necator produc.- is very toxic to the A.

ramosus mycelium (20) but not to its dormant rod-shaped cells. Thus, in the

attack-counter attack process, and through attack of these predator bacteria

on other prey cells in the vicinity, both organisms have had some of their
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cells destroyed, but have made enough new ones before going dormant that they

have actually increased their numbers.

C. necator does not encounter a counterattack in most other situations

when it attacks prey cells. Nevertheless, we now know (unpublished) that

there is a yet more powerful Cu-GIF utilizing predator bacterium in soil. It

is a Pseudomonas (apparently a new species), and it can control most of the

other Cu-GIF predators, including C. necator. We have designated this

bacterium as strain 679-2. It is such a powerful predator because it produces

a very toxic extracellular toxin in addition to its CuGIF and its ability to

attach to host cells in its attack. So far, we have found this bacterium in

only one soil. Nevertheless, it is highly competitive. With as few as 3

cells added to a g of moist soil (any soil), it will multiply extensively in

24 hours. If 0.8 mg of glutamic acid is also added to the soil (as a sub-

strate for making CuGIF and the inhibitor) strain 679-2 will multiply to

become a major component of the soil microbial population within 24 h. Once

it has multiplied in the soil, it dies back only very slowly, unless the soil

dries out. Strain 679-2 is quite sensitive to desiccation.

The activities and numbers of the various predator bacteria in soil can

be increased by making various additions to the soil. The soil protozoa do

not stop this increase (25). We are able to follow these increases by using

some techniques we developed. E. adhaerens numbers in soil can be counted by

plating dilutions of the soil over the surface, without breaking the surface,

of a pregrown lawn of M. luteus cells (2,5). E. adhaerens and most other

predator bacteria, and even some of their prey, can be followed in soil by use

of our indirect phage analysis technique (4,7,17). Very low numbers can be

detected and enumerated using our special MPN procedure (19). The Cu-GIF

predators can be counted easily by plating soil dilutions on a medium contain-

4



4

ing toxic levels of copper (23). Strain 679-2 is detected and counted on this

medium because it has strange-looking, easily-recognized colonies.

The numbers of the various predator bacteria can be greatly increased by

adding suitable prey bacteria Lo the soil (17,23). M. luteus is almost a

universal prey species for this. Alternatively, soluble nutrients can be

added in very small amounts: just enough for making the respective GIF or

other inhibitor compounds. Larger amounts cause the predators to become

saprophytes. As noted previously, glutamic acid was found to be the best

addition for causing multiplication of the copper-GIF predators, and par-

ticularly of strain 679-2. Glutamic acid works in both low and high fertility

soils. Most other possible additions work only in low fertility soils, if

they work at all.

Strain 679-2 in initial trials looks like it might be valuable in the

treatment or prevention of plant diseases. There also is the obvious pos-

sibility of adding glutamic acid or some other compound to soil to cause the

copper-GIF predators to take control of the soil population to handle a

bacterial challenge. Furthermore, the fact that these predators die back

only slowly means that a soil can be pre-treated with glutamic acid, or with

glutamic acid plus strain 679-2 cells. Thereafter, the soil will contain a

large population of the respective predator bacteria to handle a bacterial

challenge. An example of such a challenge would be if bacteria were inadver-

tently or purposely added to the soil, or if chemical or other additions to

the soil might cause growth of unwanted or harmful bacteria in the soil.
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